Many of us have heard of some of the transmitter systems within our bodies, such as the sympathetic nervous system, which gives us our fight-or-flight response. Fewer have heard of the more recently discovered endocannabinoid system (ECS), which is amazing when you consider that the ECS is critical for almost every aspect of our moment-to-moment functioning. The ECS regulates and controls many of our most critical bodily functions such as learning and memory, emotional processing, sleep, temperature control, pain control, inflammatory and immune responses, and eating. The ECS is currently at the center of renewed international research and drug development.
What is the ECS?
The ECS comprises a vast network of chemical signals and cellular receptors that are densely packed throughout our brains and bodies. The “cannabinoid” receptors in the brain — the CB1 receptors — outnumber many of the other receptor types on the brain. They act like traffic cops to control the levels and activity of most of the other neurotransmitters. This is how they regulate things: by immediate feedback, turning up or down the activity of whichever system needs to be adjusted, whether that is hunger, temperature, or alertness.
To stimulate these receptors, our bodies produce molecules called endocannabinoids, which have a structural similarity to molecules in the cannabis plant. The first endocannabinoid that was discovered was named anandamide after the Sanskrit word ananda for bliss. All of us have tiny cannabis-like molecules floating around in our brains. The cannabis plant, which humans have been using for about 5,000 years, essentially works its effect by hijacking this ancient cellular machinery.
CBD and Our Body
THC binds directly to both CB1 and CB2 cannabinoid receptors like a key fitting into a lock and activates these receptors, causing them to send a signal that culminates in a physiological response (less pain, less inflammation, lower blood pressure, mild euphoria, relaxation, etc.). But CBD doesn’t work this way. Instead of binding with cannabinoid receptors to initiate a signal itself, CBD fine-tunes the signaling that’s been triggered by THC or an endogenous cannabinoid.
Studies indicate that CBD functions as an allosteric modulator at the CB1 receptor, meaning that it influences how the receptor signals without actually causing it to signal. Think of the CB1 receptor as a dimmer switch or volume control knob — CBD turns it down slightly but not all the way. This appears to be one of the mechanisms whereby CBD lowers the ceiling on THC’s tricky psychoactivity and lessens the high, which is caused by direct CB1 receptor activation.
At the same time, CBD augments CB2 receptor signaling, which regulates inflammation and immune cell activity. How and why CBD triggers an anti-inflammatory response and other CB2-mediated outcomes without directly binding to the CB2 receptor is still somewhat of a scientific mystery. But this much is evident: CBD can fine-tune the ECS by modulating CB1 and CB2 receptor activity in different directions, tempering the former while amplifying the latter. And this combination can have profound, health-positive effects, particularly for metabolic disorders, obesity, liver disease, and other diseases linked to unhealthy diet.
CBD can elevate the levels of your endogenous cannabinoid compounds, anandamide and 2AG, which activate your cannabinoid receptors causing them to signal. CBD can also balance the way your cannabinoid receptors function, turning down the volume at CB1 while augmenting CB2 in a way that balances the body and promotes good health.
Leave a Reply
Your email is safe with us.